Nitrene Photochemistry of Manganese N-Haloamides

Van Trieste, G..P., Reid, K..A., Hicks, M..H., Das, A., Figgins, M..T., Bhuvanesh, N., Ozarowski, A., Telser, J. and Powers, D..C. (2021), Angew. Chem. Int. Ed. Accepted Author Manuscript.
(Pre print: ChemRXiv, 2021


In crystallo organometallic chemistry

Reid, K.; Powers, D.C. Chem. Commun. 2021 in press. DOI: 10.1039/d1cc01684a.


Leveraging Exchange Kinetics for the Synthesis of Atomically Precise Porous Catalysts

Ezazi, A. A., Gao, W.,Powers, D.C. ChemCatChem. 2021in press. DOI: 10.1002/cctc.202002034.


Synthesis and Characterization of Nitrogen Subvalence in a Pt Metallonitrene.

Sengupta, D.; Powers, D. C. Trends Chem. 2021, in press. DOI: 10.1016/j.trechm.2020.11.005.


Dual Polymerization Pathways for Polyolefin-Polar Block Copolymer Synthesis via a Palladium Diimine Complex: Mechanism and Scope.

Dau, H.; Keyes, A.; Basbug Alhan, H. E.; Liu, Y.-S.; Ordonez, E.; Gies, A. P.; Auteung, E.; Zhou, Z.; Maity, A.; Das, A.; Powers, D. C.; Beezer, D. B.*; Harth, E.*J. Am. Chem. Soc2020, 142, 21469–21483. DOI: 10.1021/jacs.0c10588.


In Crystallo Snapshots of Rh2-Catalyzed C–H Amination.

Das, A.; Wang, C.-H.; Van Trieste, G. P., III; Sun, C.-J.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. J. Am. Chem. Soc. 2020, 142, 19862–19867. DOI: 10.1021/jacs.0c09842. (Pre-print: ChemRXiv, 2020, DOI: 10.26434/chemrxiv.12934784.v1).


Exploring Green Chemistry with Aerobic Hypervalent Iodine Catalysis

Cosio, M.; Cardenal, A. D.; Maity, A.; Hyun, S.-M.; Akwaowo, V.; Hoffman, C.; Powers, T. M.; Powers, D. C. J. Chem. Ed. 202097, 3816–3821. DOI: 10.1021/acs.jchemed.0c00410.


Synthesis of Atomically Precise Single-Crystalline Ru2-Based Coordination Polymers

Gao, W.-Y.; Van Trieste, G. P., III; Powers, D. C. Dalton Trans. 202049, 16077–16081. DOI: 10.1039/D0DT02233K. (Pre-print: ChemRxiv, 2020, DOI: 10.26434/chemrxiv.12556160.v1).


C–H Amination Mediated by Organoazide-bound Dipyrrinato Cobalt Complexes and the Corresponding Cobalt Nitrene Intermediates

Baek, Y.; Das, A.; Zheng, S.-L.; Powers, D. C.; Betley, T. A. J. Am. Chem. Soc. 2020, 142, 11232-11243. doi: 10.1021/jacs.0c04252.


Kinetic Versus Thermodynamic Metalation Enables Synthesis of Isostructural Homo- and Heterometallic Trinuclear Clusters

Hyun, S.-M.; Upadhyay, A.; Das, A.; Burns, C.; Sung, S.; Beaty, J.; Bhuvanesh, N.; Nippe, M.; Powers, D. C. Chem. Commun. 2020, 56, 5893–5896 doi: 10.1039/D0CC02346A. Pre-print: ChemRxiv, 2020, doi: 10.26434/chemrxiv.12056028.


Atomically Precise Crystalline Materials Based on Kinetically Inert Metal Ions via Reticular Mechanopolymerization

Gao, W.-Y.; Sur, A.; Wang, C.-H.; Lorzing, G. R.;Antonio, A. M.; Ezazi, A. A.; Bhuvanesh, N.; Bloch, E. D.; and Powers, D. C. Angew. Chem. Ind. Ed. 2020, 59, 10878–10883. doi: 10.1002/anie.202002638. (Pre-print: ChemRxiv,


Crystallography of Reactive Intermediates

Das, A.; Van Trieste, G. P. III.; Powers, D. C. Comm. Inorg. Chem., 2020, 40, 116–158. doi: 10.1080/02603594.2020.1747054.


Electrocatalytic C–N Coupling via Anodically Generated Hypervalent Iodine Intermediates

Maity, A.; Frey, B. L.; Hoskinson, N. D.; Powers, D. C. J. Am. Chem. Soc2020,142, 4990−4995. doi:10.1021/jacs.9b13918. (Pre-print: ChemRxiv, 2019,


Measuring and Modulating Substrate Confinement during Nitrogen-Atom Transfer in a Ru2-Based Metal-Organic Framework

Wang, C.-H.; Gao, W.-Y.; Powers, D. C. J. Am. Chem. Soc2019141, 19203−19207. doi: 10.1021/jacs.9b09620.

(Pre-print: ChemRxiv, 2019, doi:


Characterization of a Reactive Rh2 Nitrenoid by Crystalline Matrix Isolation

Das, A.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C. J. Am. Chem. Soc2019141, 16232−16236. doi: 10.1021/jacs.9b09064.

(Pre-print: ChemRxiv, 2019, DOI:


The Role of Iodanyl Radicals as Critical Chain Carriers in Aerobic Hypervalent Iodine Chemistry

Hyun, S.-M.; Yuan, M.; Maity, A.; Gutierrez, O.; Powers, D. C. Chem 2019, 5, 2388–2404. doi: 10.1016/j.chempr.2019.06.006.


Iodosylbenzene Coordination Chemistry Relevant to MOF Catalysis

Cardenal, A. D.; Maity, A.; Gao, W.-Y.; Ashirov, R.; Hyun, S.-M.; Powers, D. C. Inorg. Chem2019, 58, 10543−10553. doi: 10.1021/acs.inorgchem.9b01191.


Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts

Gao, W.-Y.; Ezazi, A. A.; Wang, C.-H.; Moon, J.; Abney, C.; Wright, J.; Powers, D. C. Organometallics 201938, 3436–3443. doi:10.1021/acs.organomet.9b00162. 

(Pre-print: ChemRxiv, 2019, DOI: 10.26434/chemrxiv.7538747.v1).


High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral Cr(IV) Siloxide Complex and Computational Studies of Related Cr(IV)L4 Systems

Bucinsky, L.; Breza, M.; Powers, D. C.; Hwang, S. J.; Kyzystek, J.; Nocera, D. G.; Telser, J. Inorg. Chem2019, 58, 4907-4920.

doi: 10.1021/acs.inorgchem.8b03512.


Templating Metastable Pd2 Carboxylate Aggregates

Wang, C.-H.; Gao, W.-Y.; Ma, Q.; Powers, D. C. Chem. Sci. 2019, 10, 1823-1830. doi: 10.1039/C8SC04940H.


Hypervalent Iodine Chemistry as a Platform for Aerobic Oxidation Catalysis

Maity, A.; Powers, D. C. Synlett 2019, 30, 257–262. doi: 10.1055/s-0037-1610338. (Invited Highlight).


 In Operando Analysis of Diffusion in Porous Metal-Organic Framework Catalysts

Gao, W.-Y.; Cardenal, A. D.; Wang, C.-H.; Powers, D. C. Chem. Eur. J. 2019, 25, 3465-3476. doi: 10.1002/chem.201804490.


 Observation of a Photogenerated Rh2 Nitrenoid Intermediate in C-H Amination

Das, A.; Maher, A. G.; Telser, J.; Powers, D. C. J. Am. Chem. Soc2018140, 10412-10415. doi: 10.1021/jacs.8b05599.


 Oxidation Catalysis via an Aerobically Generated Dess-Martin Periodinane Analogue

Maity, A.; Hyun, S.-M.; Wortman, A. K.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 7205-7209. doi: 10.1002/anie.201804159. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.6149276)


 Probing Substrate Diffusion in Interstitial MOF CHemistry with Kinetic Isotope Effects

Wang, C.-H.; Das, A.; Gao, W.-Y.; Powers, D. C. Angew. Chem. Int. Ed. 2018, 57, 3676-3681. doi: 10.1002/anie.201713244. (Preprint available: ChemRxiv, 2018, doi: 10.26434/chemrxiv.5883142.v1)


Oxidase Catalysis via Aerobically Generated Hypervalent Iodine Intermediates

Maity, A.; Hyun, S.-M.; Powers, D. C. Nat. Chem.  201810, 200-204. doi: 10.1038/nchem.2873. (Preprint available: ChemRxiv, 2017,

doi: 10.26434/chemrxiv.5419270.v1)


Cis-Decalin Oxidation as a Stereochemical Probe of in-MOF versus on-MOF Catalysis

Cardenal, A. D.; Park, H. J.; Chalker, C. J.; Ortiz, K. G.; Powers, D. C. Chem. Commun. 2017, 53, 7377-7380. doi: 10.1039/C7CC02570J.


Direct Characterization of a Reactive Lattice-Confined Ru2 Nitride by Photocrystallography

Das, A.; Reibenspies, J. H.; Chen, Y.-S.; Powers, D. C.  J. Am. Chem. Soc. 2017, 139, 2912-2915. doi: 10.1021/jacs.6b13357.


 Oxidation of Metal–Carbon Bonds

Cardenal, A. D.; Powers, D. C. Chem. Molec. Sci. Chem. Eng. 2016, 55, 1–27. doi: 10.1016/B978-0-12-409547-2.13796-5.

Prior to independent career

33.  Multielectron C–H Photoactivation with an Sb(V) Oxo Corrole

Lemon, C. M.; Maher, A. G.; Mazzotti, A. R.; Powers, D. C.; Nocera, D. G. Chem. Comm. 2020, 56, 5247–5250.

doi: 10.1039/C9CC09892E.

32.  Halogen Photoelimination from Sb(V) Dihalide Corroles

Lemon, C. M.; Hwang, S. J.; Maher, A. G.; Powers, D. C.; Nocera, D. G. Inorg. Chem. 2018, 57, 5333-5342.

doi: 10.1021/acs.inorgchem.8b00314.

31. Gold Corroles as Near-IR Phosphors for Oxygen Sensing

Lemon, C. M.; Powers, D. C.; Brother, P. J.; Nocera, D. G.  Inorg. Chem. 201756, 10991–10997.

30. The Energetics and Mechanism of Cl2 Elimination from Binuclear Pt(III) Complexes

Powers, D. C.; Hwang, S. J.; Anderson, B. L.; Yang, H.; Zheng, S.-L. Chen, Y.-S.; Cook, T. R.; Gabbai, F. P.; Nocera, D. G. Inorg. Chem. 2016, 55, 11815–11820.

29. Electronic Structure of Copper Corroles

Lemon, C. M.; Huynh, M.; Maher, A. G.; Anderson, B. L.; Bloch, E. D.; Powers, D. C.; Nocera, D. G. Angew. Chem., Int. Ed. 201655,


28. Secondary Coordination Sphere Effects in Halogen Photoelimination from Monomeric Ni(III) Complexes 

Hwang, S. J.; Anderson, B. L.; Powers, D. C.; Maher, A. G.; Hadt, R. G.; Nocera, D. G. Organometallics 201534, 4766–4774.

27. Trap-Free Chlorine Photoelimination from Mononuclear Ni(III) Complexes

Hwang, S. J.; Powers, D. C.; Maher, A. G.; Anderson, B. L.; Hadt, R. G.; Zheng, S.-L.; Chen, Y.-S.; Nocera, D. G. J. Am. Chem. Soc. 2015137, 6472–6475.

26.  Tandem Redox Mediator/Ni(II) Trihalide Complex Photocycle for Hydrogen Evolution from HCl 

Hwang, S. J.; Powers, D. C.; Maher, A. G.; Nocera, D. G. Chem. Sci. 20156, 917–922.

25. Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes 

Ullman, A. M.; Liu, Y.; Bediako, D. K.; Huynh, M.; Wang, H.; Anderson, B. L.; Powers, D. C.; Breen, J. J. Abruña, H. D.; Nocera, D. G. J. Am. Chem. Soc2014136, 17681–17688.

24.  Photocrystallographic Observation of Halide-Bridged Intermediates in Halogen Photoeliminations 

Powers, D. C.; Anderson, B. L.; Hwang, S. J.; Powers, T. M.; Pérez, L. M.; Hall, M. B.; Zheng, S.-L.; Chen, Y.-S.; Nocera; D. G. J. Am. Chem. Soc. 2014136, 15346–15355. (Highlighted in: Nature Chem. 20157, 12–13.)

23. Theoretical Analysis of Cobalt Hangman Porphyrins: Ligand Dearomatization and Mechanistic Implications for Hydrogen Evolution

Solis, B. H.; Maher, A. G.; Honda, T. Powers, D. C.; Nocera, D. G.; Hammes-Schiffer, S. ACS Catal. 20144, 4516–4526.

22. Halide-Bridged Binuclear HX-Splitting Catalysts 

Powers, D. C.; Hwang, S. J.; Zheng, S.-L.; Nocera, D. G. Inorg. Chem. 201453, 9122–9128.

21. Oxidation of Carbon–Metal Bonds 

Powers, D. C.; Ritter, T.  Comp. Org. Synth. 2014, Chapter 7.27.

20. Metal–Metal Bond-Containing Complexes as Catalysts for C–H Functionalization 

Kornecki, K.; Berry, J. F.; Powers, D. C.; Ritter, T. Prog. Inorg. Chem. 201458, 223–300.

19. Two-Electron Photoreduction of a Ni(II) Halide Enables H2 Evolution from HCl

Powers, D. C.; Anderson, B. L.; Nocera, D. G. J. Am. Chem. Soc. 2013135, 18876–18883.

18.  Halogen Photoelimination from Dirhodium Phosphazane Complexes via Chloride-Bridged Intermediates 

Powers, D. C.; Chambers, M. B.; Teets, T. S.; Elgrishi, N.; Anderson, B. L.; Nocera, D. G. Chem. Sci. 20134, 2880–2885.

17. A Transition State Analogue for the Oxidation of Binuclear Palladium(II) to Binuclear Palladium(III) Complexes 

Powers, D. C.; Ritter, T.  Organometallics 201332, 2042–2045.

16. Bimetallic Catalysis with Palladium 

Powers, D. C.; Ritter, T. In Science of Synthesis; Trost, B. M.; Stoltz, B. M., Eds.; Thieme: Stuttgart, 2012; Vol. 1, 1–31.

15. Connecting Binuclear Pd(III) and Mononuclear Pd(IV) Chemistry by Pd–Pd Bond Cleavage 

Powers, D. C.; Lee, E.; Ariafard, A.; Sanford, M. S.; Yates, B. F.; Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 2012134, 12002–12009. 

14. Bimetallic Redox Synergy in Oxidative Palladium Catalysis 

Powers, D. C.; Ritter, T.  Acc. Chem. Res. 2012, 45, 840–850. 

13. Synthesis and Structure of Solution-Stable One-Dimensional Palladium Wires 

Campbell, M. G.; Powers, D. C.; Raynaud, J.; Graham, M. J.; Xie, P.; Lee, E.; Ritter, T. Nature Chem. 20113, 949–953. 

12. A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging 

Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. Science 2011334, 639–642. 

11. Palladium(III) in Synthesis and Catalysis

Powers, D. C.; Ritter, T.  Top. Organomet. Chem. 201135, 129–156.

10. On the Mechanism of Palladium-Catalyzed Aromatic C–H Oxidation 

Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter, T. J. Am. Chem. Soc. 2010132, 14530–14536. 

9. Bimetallic Reductive Elimination from Dinuclear Pd(III) Complexes 

Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard, W. A., III; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14092–14103.

8. Bimetallic Palladium Catalysis: Direct Observation of Pd(III)–Pd(III) Intermediates 

Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009131, 17050–17051.

7. Bimetallic Pd(III) Complexes in Palladium-Catalysed Carbon–Heteroatom Bond Formation

Powers, D. C.; Ritter, T.  Nature Chem. 20091, 302–309. (Highlighted in: Nature 2009459, 917–918.)

6.  Thermal Isomerizations of cis,anti,cis-Tricyclo[,7]dodec-3-ene to trans- and cis-endo-Tricyclo[,7]dodec-9-ene: Diradical Conformations and Stereochemical Outcomes in [1,3] Carbon Shifts 

Baldwin, J. E.; Bogdan, A. R.; Leber, P. A.; Powers, D. C. Tetrahedron 200763, 6331–6338.

5. Thermal Chemistry of Bicyclo[4.2.0]oct-2-enes 

Powers, D. C.; Leber, P. A.; Gallagher, S. S.; Higgs, A. T.; McCullough, L. A.; Baldwin, J. E. J. Org. Chem. 200772, 187–194.

4. Thermal Reactions of 7-d- and 8-d-Bicyclo[4.2.0]oct-2-enes  

Baldwin, J. E.; Leber, P. A.; Powers, D. C. J. Am. Chem. Soc. 2006128, 10020–10021.

3. Thermal Reactions of 8-Methylbicyclo[4.2.0]oct-2-enes: Competitive Diradical-Mediated [1,3] Sigmatropic, Stereomutation, and Fragmentation Processes 

Bogle, X. S.; Leber, P. A.; McCullough, L. A.; Powers, D. C. J. Org. Chem200570, 8913–8918.

2. Thermal Isomerization of cis,anti,cis-Tricyclo[,7]undec-3-ene to endo-Tricyclo[,6]undec-8-ene 

Baldwin, J. E.; Bogdan, A. R.; Leber, P. A.; Powers, D. C. Org. Lett. 20057, 5195–5197.

1. Analysis of Natural Buffer Systems and the Impact of Acid Rain. An Environmental Project for First-Year Chemistry Students 

Powers, D. C.; Higgs, A. T.; Obley, M. L.; Leber, P. A.; Hess, K. R.; Yoder, C. H.  J. Chem. Educ. 200582, 274–277.